

Note

Microwave assisted rapid and efficient synthesis of nitrogen and sulphur containing heterocyclic compounds and their pharmacological evaluation

Ketan Mistry & K R Desai*

Department of Chemistry, Veer Narmad South Gujarat University, Surat 395 007 Gujarat, India

E-mail: drketanmistry@yahoo.com

Received 25 April 2005; accepted (revised) 20 December 2005

A series of compounds namely, 3-chloro-4-(2",4"-dichlorophenyl)-4-methyl-1-(substituted-1',3'-benzothiazol-2'-yl)-azetidin-2-ones **4a-j** and 2-(2",4"-dichlorophenyl)-2,5-dimethyl-3-(substituted-1',3'-benzothiazol-2'-yl)-1,3-thiazolidin-4-ones **5a-j** have been prepared by the reaction of schiff base derivatives **3** with chloroacetyl chloride in the presence of triethylamine and thiolactic acid, respectively. The schiff base derivatives **3** have been prepared by the condensation of substituted-2-aminobenzothiazole **1** with 2,4-dichloroacetophenone **2**. The reactions have been carried out by microwave and conventional methods. The microwave assisted reactions are carried out in a "QPro-M modified microwave oven" made in Canada. Both the azetidinones and thiazolidinones are pharmacologically active and screened for their antibacterial activity against *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli* and *Salmonella typhi* and antifungal activity against *Candida albicans*.

Keywords: Azetidinone, thiazolidinone, chloroacetyl chloride, thiolactic acid, 2-aminobenzothiazole, microwave method, anti-bacterial activity

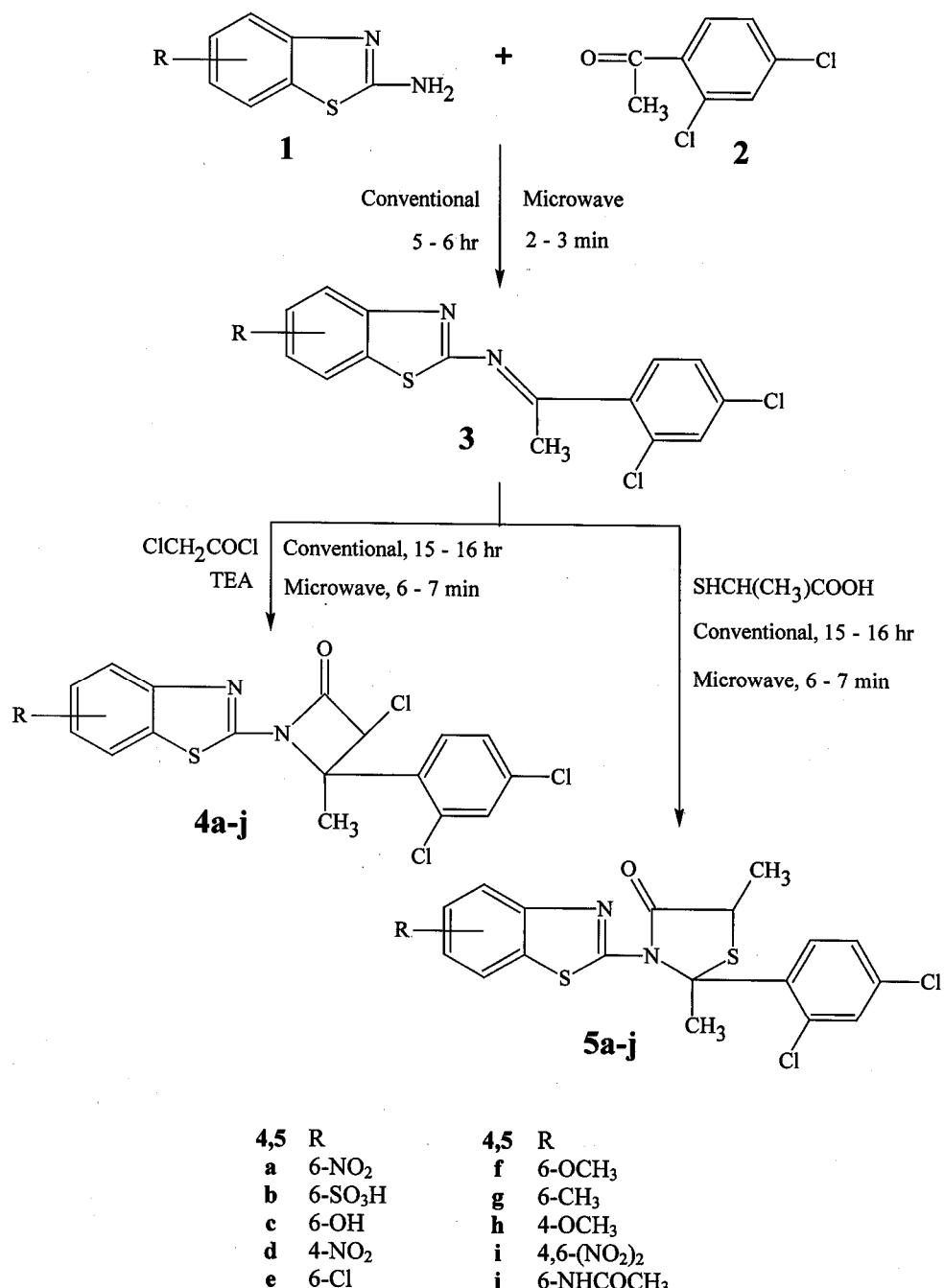
IPC: Int.Cl.⁸C07D

Benzothiazole derivatives play a vital role in biological fields such as anti-TB¹ and anti-allergic activity. Schiff base has good antimicrobial², fungicidal³ and pharmacological applications⁴ and it can be prepared by the acid catalyzed reaction of amines and ketones or aldehydes⁵. 2-Azetidinone derivatives have been reported to possess anti-inflammatory⁶, antidegenerative, fungicidal⁷ and antibiotic⁸ activities. 4-Thiazolidinones give good pharmacological properties⁹. 4-Thiazolidinones are known to exhibit antitubercular¹⁰, antibacterial, anticonvulsant¹¹ and antifungal¹² activities.

The application of microwave irradiation is used for carrying out chemical transformations which are pollution free and eco-friendly^{13,14}. Commercial

microwave oven is used as a convenient source of heat in the laboratory. The microwave assisted organic reactions occur more rapidly, safely and with higher chemical yields^{15,16} thus, render the microwave method superior to conventional method.

The starting compounds substituted-2-amino-benzothiazoles **1** have been synthesized from various substituted amines¹⁷. The condensation of **1** with 2,4-dichloroacetophenone **2** was carried out by both conventional and microwave methods to give compounds N-[1'-(2",4"-dichlorophenyl)-ethylidene]-substituted-1,3-benzothiazole-2-amine **3**. In conventional method, the reaction was carried out in methanol and it took 5 - 6 hr, whereas by microwave irradiation it took only 2-3 min¹⁸.


In conventional method treatment of the schiff base **3** with chloroacetyl chloride in the presence of triethylamine and thiolactic acid using benzene as a solvent yielded compounds 3-chloro-4-(2",4"-dichlorophenyl)-4-methyl-1-(substituted-1',3'-benzothiazol-2'-yl)-azetidin-2-ones **4a-j** and 2-(2",4"-dichlorophenyl)-2,5-dimethyl-3-(substituted-1',3'-benzothiazol-2'-yl)-1,3-thiazolidin-4-ones **5a-j**, respectively (**Scheme I**). It took about 15 - 16 hr in conventional method, while under microwave irradiation using DMF as a solvent the reaction was complete in 6-7 min.

A comparative study in terms of yield and reaction period is shown in **Tables I and II**.

Experimental Section

All the melting points were determined on a PMP-DM scientific melting point apparatus and are uncorrected. The purity of compounds was checked by TLC on silica gel 'G' coated glass plates. IR spectra were recorded in KBr on a Shimadzu FT-IR 8300 spectrophotometer, ¹H NMR spectra on a Brucker DRX - 300 in CDCl₃ at 200 MHz using TMS as an internal standard (chemical shifts in δ , ppm). Microwave assisted reactions were carried out in a "QPro-M modified microwave oven" made in Canada at 300 watt and 2450 MHz frequency. Elemental analysis was carried out on Carlo Erba-1108 analyzer.

Synthesis of 3-chloro-4-(2",4"-dichlorophenyl)-4-methyl-1-(substituted-1',3'-benzothiazol-2'-yl)-aze

Scheme I

tidin-2-ones 4a-j (Conventional method). A mixture of Schiff base **3** (0.01 mole) in benzene was taken in a round bottom flask. Then chloroacetyl chloride (0.01 mole) and triethylamine (0.01 mole) in benzene were added slowly. It was refluxed for 15-16 hr. The triethylamine hydrochloride formed during the reaction, was removed and the benzene was distilled off to get the product. The crude product obtained was recrystallised from ethanol.

Microwave method. A mixture of Schiff base **3** (0.01 mole) in DMF was taken in a round bottom flask, and to it chloroacetyl chloride (0.01 mole) and triethylamine (0.01 mole) were added slowly. The mixture was irradiated in a QPro-M modified microwave oven for about 6-7 min. It was then diluted with ice-cold water. The solid product thus formed was filtered, dried and recrystallised from ethanol.

Table I — Characterization data of compounds **4a-j**

Compd	Mol. formula (Mol. wt.)	Yield (%)		m.p. °C	Required (Found) %		
		Conven. method (period/hr)	M. W. method (period/min)		C	H	N
4a	C ₁₇ H ₁₀ N ₃ O ₃ SCl ₃ (442.70)	68 (15.0)	80 (6.5)	169	46.12 (46.11)	2.28 2.25	9.49 9.46
4b	C ₁₇ H ₁₁ N ₂ O ₄ S ₂ Cl ₃ (477.77)	64 (15.0)	82 (7.0)	158	42.74 (42.72)	2.32 2.34	5.86 5.84
4c	C ₁₇ H ₁₁ N ₂ O ₂ SCl ₃ (413.70)	64 (16.0)	80 (7.0)	155	49.35 (49.39)	2.68 2.65	6.77 6.79
4d	C ₁₇ H ₁₀ N ₃ O ₃ SCl ₃ (442.70)	60 (16.0)	75 (7.0)	145	46.12 (46.13)	2.28 2.29	9.49 9.48
4e	C ₁₇ H ₁₀ N ₂ OSCl ₄ (432.15)	65 (16.0)	78 (7.0)	165	47.25 (47.24)	2.33 2.37	6.48 6.47
4f	C ₁₈ H ₁₃ N ₂ O ₂ SCl ₃ (427.73)	68 (16.0)	75 (6.5)	139	50.54 (50.56)	3.06 3.04	6.55 6.52
4g	C ₁₈ H ₁₃ N ₂ OSCl ₃ (411.73)	65 (15.0)	78 (6.5)	129	52.51 (52.50)	3.18 3.19	6.80 6.82
4h	C ₁₈ H ₁₃ N ₂ O ₂ SCl ₃ (427.73)	68 (15.0)	80 (7.0)	132	50.54 (50.53)	3.06 3.02	6.55 6.59
4i	C ₁₇ H ₉ N ₄ O ₅ SCl ₃ (487.70)	70 (16.0)	80 (6.5)	140	41.87 (41.85)	1.86 1.87	11.49 11.45
4j	C ₁₉ H ₁₄ N ₃ O ₂ SCl ₃ (454.75)	60 (16.0)	75 (6.5)	162	50.18 (50.19)	3.10 3.12	9.24 9.22

4a: ¹H NMR: δ 6.98 - 7.78 (6H, m, Ar-H), 4.0 (1H, s, -CHCl), 1.1 (3H, s, -CH₃); MS (M⁺): 441

4b: ¹H NMR: δ 7.15 - 7.83 (6H, m, Ar-H), 4.15 (1H, s, -CHCl), 1.33 (3H, s, -CH₃), 3.5 (1H, s, -SO₃H); MS (M⁺): 476

4c: ¹H NMR: δ 6.87 - 7.62 (6H, m, Ar-H), 4.3 (1H, s, -CHCl), 1.37 (3H, s, -CH₃), 5.0 (1H, s, -OH); MS (M⁺): 412

4f: ¹H NMR: δ 6.78 - 7.69 (6H, m, Ar-H), 4.4 (1H, s, -CHCl), 1.5 (3H, s, -CH₃), 2.82 (3H, s, -OCH₃); MS (M⁺): 427

4j: ¹H NMR: δ 7.12 - 7.71 (6H, m, Ar-H), 4.2 (1H, s, -CHCl), 1.42 (3H, s, -CH₃), 7.85 (1H, s, -CONH), 0.13 (3H, d, -NHCOCH₃); MS (M⁺): 453

Table II — Characterization data of compounds **5a-j**

Compd	Mol. formula (Mol. wt.)	Yield (%)		m.p. °C	Required (Found) %		
		Conven. method (period/hr)	M. W. method (period/min)		C	H	N
5a	C ₁₈ H ₁₃ N ₃ O ₃ S ₂ Cl ₂ (454.35)	60 (16.0)	72 (7.0)	158	47.58 (47.59)	2.88 2.89	9.25 9.28
5b	C ₁₈ H ₁₄ N ₂ O ₄ S ₃ Cl ₂ (489.41)	62 (16.0)	75 (7.0)	188	44.17 (44.16)	2.88 2.87	5.72 5.74
5c	C ₁₈ H ₁₄ N ₂ O ₂ S ₂ Cl ₂ (425.35)	62 (16.0)	75 (7.5)	146	50.83 (50.82)	3.32 3.31	6.59 6.58
5d	C ₁₈ H ₁₃ N ₃ O ₃ S ₂ Cl ₂ (454.35)	65 (16.0)	75 (7.5)	157	47.58 (47.59)	2.88 2.87	9.25 9.28
5e	C ₁₈ H ₁₃ N ₂ OS ₂ Cl ₃ (443.79)	62 (15.0)	78 (7.5)	141	48.71 (48.74)	2.95 2.94	6.31 6.34
5f	C ₁₉ H ₁₆ N ₂ O ₂ S ₂ Cl ₂ (439.38)	70 (16.0)	78 (7.5)	152	51.94 (51.90)	3.67 3.68	6.38 6.35
5g	C ₁₉ H ₁₆ N ₂ OS ₂ Cl ₂ (423.38)	65 (16.0)	75 (7.0)	129	53.90 (53.93)	3.81 3.84	6.62 6.61

—Contd

Table II — Characterization data of compounds **5a-j**—*Contd*

Compd	Mol. formula (Mol. wt.)	Yield (%)		m.p. °C	Required (Found) %		
		Conven. method (period/hr)	M. W. method (period/min)		C	H	N
5a	C ₁₈ H ₁₃ N ₃ O ₃ S ₂ Cl ₂ (454.35)	60 (16.0)	72 (7.0)	158	47.58 (47.59)	2.88 2.89	9.25 9.28)
5b	C ₁₈ H ₁₄ N ₂ O ₄ S ₃ Cl ₂ (489.41)	62 (16.0)	75 (7.0)	188	44.17 (44.16)	2.88 2.87	5.72 5.74)
5c	C ₁₈ H ₁₄ N ₂ O ₂ S ₂ Cl ₂ (425.35)	62 (16.0)	75 (7.5)	146	50.83 (50.82)	3.32 3.31	6.59 6.58)
5d	C ₁₈ H ₁₃ N ₃ O ₃ S ₂ Cl ₂ (454.35)	65 (16.0)	75 (7.5)	157	47.58 (47.59)	2.88 2.87	9.25 9.28)
5e	C ₁₈ H ₁₃ N ₂ OS ₂ Cl ₃ (443.79)	62 (15.0)	78 (7.5)	141	48.71 (48.74)	2.95 2.94	6.31 6.34)
5f	C ₁₉ H ₁₆ N ₂ O ₂ S ₂ Cl ₂ (439.38)	70 (16.0)	78 (7.5)	152	51.94 (51.90)	3.67 3.68	6.38 6.35)
5g	C ₁₉ H ₁₆ N ₂ OS ₂ Cl ₂ (423.38)	65 (16.0)	75 (7.0)	129	53.90 (53.93)	3.81 3.84	6.62 6.61)
5h	C ₁₉ H ₁₆ N ₂ O ₂ S ₂ Cl ₂ (439.38)	70 (16.0)	78 (7.0)	162	51.94 (51.92)	3.67 3.69	6.38 6.35)
5i	C ₁₈ H ₁₂ N ₄ O ₅ S ₂ Cl ₂ (499.34)	68 (15.0)	80 (7.5)	171	43.29 (43.25)	2.42 2.45	11.22 11.20)
5j	C ₂₀ H ₁₇ N ₃ O ₂ S ₂ Cl ₂ (466.40)	65 (15.0)	82 (7.5)	177	51.50 (51.51)	3.67 3.69	9.01 9.02)
5d	¹ H NMR: δ 6.82 - 7.83 (6H, m, Ar-H), 1.11 (3H, s, -C-CH ₃), 1.5 (3H, d, -CH-CH ₃), 4.2 (1H, s, -CH); MS (M ⁺): 453						
5e	¹ H NMR: δ 6.78 - 7.67 (6H, m, Ar-H), 1.2 (3H, s, -C-CH ₃), 1.43 (3H, d, -CH-CH ₃), 4.23 (1H, s, -CH); MS (M ⁺): 443						
5g	¹ H NMR: δ 7.08 - 7.72 (6H, m, Ar-H), 1.25 (6H, s, -C-CH ₃), 1.52 (3H, d, -CH-CH ₃), 4.3 (1H, s, -CH); MS (M ⁺): 422						
5h	¹ H NMR: δ 7.13 - 7.84 (6H, m, Ar-H), 1.18 (3H, s, -C-CH ₃), 1.58 (3H, d, -CH-CH ₃), 2.87 (3H, s, -OCH ₃), 4.1 (1H, s, -CH); MS (M ⁺): 438						
5i	¹ H NMR: δ 7.17 - 7.81 (5H, m, Ar-H), 1.15 (3H, s, -C-CH ₃), 1.6 (3H, d, -CH-CH ₃), 4.11 (1H, s, -CH); MS (M ⁺): 498						

Following the same procedure, the compounds **4a-j** were prepared. Their characterization data are recorded in **Table I**.

Synthesis of 2-(2'',4''-dichlorophenyl)-2,5-di-methyl-3-(substituted-1',3'-benzothiazol-2'-yl)-1,3-thiazolidin-4-ones **5a-j (Conventional method).** A mixture of schiff base **3** (0.01 mole) in benzene was taken in a round bottom flask. Then thiolactic acid (0.01 mole) in benzene was added slowly. It was refluxed for 15 - 16 hr. The benzene was distilled off to get the crude product, which was recrystallised from ethanol.

Microwave method. A mixture of schiff base **3** (0.01 mole) in DMF was taken in a round bottom flask, and thiolactic acid (0.01 mole) was added

slowly. The mixture was irradiated in a QPro-M modified microwave oven for about 6 - 7 min. It was then diluted with ice-cold water. The solid product thus formed was filtered, dried and recrystallised from ethanol.

Following the same procedure, the compounds **5a-j** were prepared. Their characterization data are recorded in **Table II**.

Antimicrobial activity

The synthesized compounds were tested for their antibacterial activity by measuring the zone of inhibition on agar plates (diffusimetric method)¹⁹ with *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli* and *Salmonella typhi* and antifungal activity against *Candida albicans* as test organisms (**Table III**). The MIC of the compound

Table III — Zone of inhibition (mm) of compounds **4a-j** and **5a-j**

Compd	R	Antibacterial				Antifungal <i>C. albicans</i>
		<i>S. aureus</i>	<i>B. subtilis</i>	<i>E. coli</i>	<i>S. typhi</i>	
4a	6-NO ₂	9	7	8	7	13
4b	6-SO ₃ H	13	10	12	8	11
4c	6-OH	12	11	13	13	8
4d	4-NO ₂	11	9	12	8	13
4e	6-Cl	7	10	14	9	7
4f	6-OCH ₃	7	13	7	10	14
4g	6-CH ₃	12	7	10	14	9
4h	4-OCH ₃	9	14	12	11	12
4i	4,6-(NO ₂) ₂	9	8	8	11	11
4j	6-NHCOCH ₃	14	9	13	7	12
5a	6-NO ₂	8	13	14	8	8
5b	6-SO ₃ H	12	12	12	12	9
5c	6-OH	12	9	8	9	12
5d	4-NO ₂	7	13	9	12	7
5e	6-Cl	14	9	10	11	12
5f	6-OCH ₃	10	14	8	11	7
5g	6-CH ₃	8	14	12	14	14
5h	4-OCH ₃	8	7	7	7	13
5i	4,6-(NO ₂) ₂	11	8	14	13	14
5j	6-NHCOCH ₃	10	9	7	12	8
Penicillin	-	16	18	16	19	-
Tetracycline	-	18	19	20	18	-

was defined as the lowest concentration at which there was 80 % inhibition of growth compared with the growth for a drug-free control. By visualizing the antibacterial data, it could be observed that compounds of the series showed moderate to good activity at 100 μ g/mL.

Acknowledgement

The authors are thankful to the Veer Narmad South Gujarat University, Surat for providing research facilities and to CDRI, Lucknow for providing ¹H NMR and mass spectra and elemental analysis.

References

- 1 Cox O, Jackson H & Vargas V A, *J Mednl Chem*, 25, **1978**, 1982.
- 2 Naik B D & Desai K R, *Asian J Chem*, 16, **2004**, 1749.
- 3 Vinod Kumar & Dhakarey R, *J Indian Council Chem*, 20, **2003**, 46.
- 4 Warad D U, Satish C D, Kulkarni V H & Bajgur C S, *Indian J Chem*, 39A, **2000**, 415.
- 5 Desai P B, Desai S & Desai K R, *Heterocycl Commun*, 5, **1999**, 385.
- 6 Pandey V K, Gupta V D, Upadhyay M & Singh V K, *Indian J Chem*, 44B, **2005**, 158.
- 7 Giri S & Khan M, *J Indian Chem Soc*, 71, **1994**, 201.
- 8 Jamal Ahmad Khan M A & Syed Shafi S, *Asian J Chem*, 15, **2003**, 1443.
- 9 Yadav R, Srivastava S, Srivastava S K & Srivastava S D, *Chemistry, An Indian Journal*, 1, **2003**, 95.
- 10 Mistry K M & Desai K R, *E-Journal of Chem*, 1(4), **2004**, 189.
- 11 Srivastava S K, Srivastava S & Srivastava S D, *Indian J Chem*, 38B, **1999**, 183.
- 12 Bhatt J J, Shah B R, Trivedi P B, Undavia N K & Desai N C, *Indian J Chem*, 33B, **1994**, 189.
- 13 Hayes, B L, *Aldrichhim Acta*, 37, **2004**, 66.
- 14 Blackwell H E, *Org Biomol Chem*, 1, **2003**, 251.
- 15 Kuhnert N, *Angew Chem Int Ed*, 41, **2002**, 1863.
- 16 Lidstrom P, Tierney J, Wathey B, Westmam J, *Tetrahedron*, 57, **2001**, 9225.
- 17 Ojha K G, Tahiliani Heer & Jaisinghani Neera, *Indian J Chem*, 42B, **2003**, 171.
- 18 Villemin D, *Synthetic Commun*, 20(20), **1990**, 3213.
- 19 Weber A D & Sanders C S, *Antimicrob Agents Chemother*, 34, **1990**, 156.